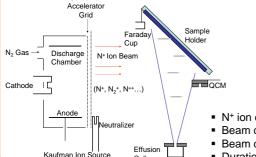
Quantum Computing with Electron Spins

Chao Liu,^a Paolo Messina,^a John Schlueter,^a Frank Fradin,^a Orlando Auciello,^a John Carlisle,^a
Tijana Rajh,^b Ruihua Cheng,^c and Vinayak Dravid^d

^a Materials Science Division, ANL; ^b Chemistry Division, ANL;

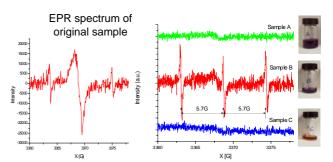
^c Indiana University-Purdue University, Indianapolis; ^d Northwestern University


Motivation

Understand quantum spin phase coherence of endohedral N@C₆₀ molecules as potential qubits for quantum computing.

Major accomplishments

Prepare N@C₆₀ via low energy N⁺ ion irradiation of C₆₀ molecules adsorbed on a solid surface and purify a solution containing N@C₆₀ using High Performance Liquid Chromatography

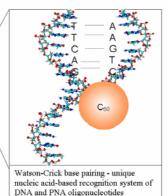

Producing N@C₆₀ molecules with ion-bombardment method:

Screen &

Parameters

- N⁺ ion energy: 575 eV
- Beam current: 20 mA
- Beam cross-section: 3 cm
- Duration of irradiation: 10 min
- Chamber pressure: 4×10⁻⁴ Torr

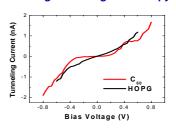
Sample B contains enriched N@C60, while samples A and C contain fullerene impurities. The ¹⁴N triplet signal is observed only in sample B: The impurity signal has been removed.


Future Work -

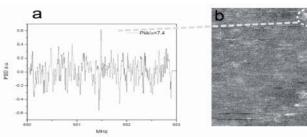
Development of DNA scaffolds for N@C₆₀ and single spin detection

DNA scaffolds for N@C₆₀


 $N@C_{60}$ will be functionalized with carboxylate groups and anchored to polynucleoamide (PNA). $N@C_{60}$ /PNA form a particle/adapter complex that will attach to specific sites along double stranded DNA by molecular recognition


flow C C Watson-mucleic a DNA an

> Qubit positions will be controllable to 3.5A, the thickness of a single base pair


Single Electron Transistor (SET)-Scanning Tunneling Microscopy

Coulomb blockade effect in C₆₀

Electron Spin Resonance-Scanning Tunneling Microscopy (ESR-STM)

- a) ESR-STM spectra of a single DPPH molecule detected via phase sensitive detection. b) STM image ($10 \times 10 \text{ nm}^2$) of several DPPH molecules on Au(111).
 - \succ We plan to use ESR-STM as well as radio frequency-SET to study the quantum spin phase coherence of N@C₆₀

